3.5.38 \(\int \frac {x^2}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^2} \, dx\) [438]

3.5.38.1 Optimal result
3.5.38.2 Mathematica [A] (verified)
3.5.38.3 Rubi [C] (verified)
3.5.38.4 Maple [A] (verified)
3.5.38.5 Fricas [F]
3.5.38.6 Sympy [F]
3.5.38.7 Maxima [F]
3.5.38.8 Giac [F]
3.5.38.9 Mupad [F(-1)]

3.5.38.1 Optimal result

Integrand size = 27, antiderivative size = 79 \[ \int \frac {x^2}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^2} \, dx=-\frac {x^2}{b c (a+b \text {arcsinh}(c x))}-\frac {\text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {2 a}{b}\right )}{b^2 c^3}+\frac {\cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{b^2 c^3} \]

output
-x^2/b/c/(a+b*arcsinh(c*x))+cosh(2*a/b)*Shi(2*(a+b*arcsinh(c*x))/b)/b^2/c^ 
3-Chi(2*(a+b*arcsinh(c*x))/b)*sinh(2*a/b)/b^2/c^3
 
3.5.38.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.89 \[ \int \frac {x^2}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^2} \, dx=\frac {-\frac {b c^2 x^2}{a+b \text {arcsinh}(c x)}-\text {Chi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right ) \sinh \left (\frac {2 a}{b}\right )+\cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )}{b^2 c^3} \]

input
Integrate[x^2/(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^2),x]
 
output
(-((b*c^2*x^2)/(a + b*ArcSinh[c*x])) - CoshIntegral[2*(a/b + ArcSinh[c*x]) 
]*Sinh[(2*a)/b] + Cosh[(2*a)/b]*SinhIntegral[2*(a/b + ArcSinh[c*x])])/(b^2 
*c^3)
 
3.5.38.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.72 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.05, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.481, Rules used = {6233, 6195, 25, 5971, 27, 3042, 26, 3784, 26, 3042, 26, 3779, 3782}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt {c^2 x^2+1} (a+b \text {arcsinh}(c x))^2} \, dx\)

\(\Big \downarrow \) 6233

\(\displaystyle \frac {2 \int \frac {x}{a+b \text {arcsinh}(c x)}dx}{b c}-\frac {x^2}{b c (a+b \text {arcsinh}(c x))}\)

\(\Big \downarrow \) 6195

\(\displaystyle \frac {2 \int -\frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right ) \sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b^2 c^3}-\frac {x^2}{b c (a+b \text {arcsinh}(c x))}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \int \frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right ) \sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b^2 c^3}-\frac {x^2}{b c (a+b \text {arcsinh}(c x))}\)

\(\Big \downarrow \) 5971

\(\displaystyle -\frac {2 \int \frac {\sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{2 (a+b \text {arcsinh}(c x))}d(a+b \text {arcsinh}(c x))}{b^2 c^3}-\frac {x^2}{b c (a+b \text {arcsinh}(c x))}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b^2 c^3}-\frac {x^2}{b c (a+b \text {arcsinh}(c x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {x^2}{b c (a+b \text {arcsinh}(c x))}-\frac {\int -\frac {i \sin \left (\frac {2 i a}{b}-\frac {2 i (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b^2 c^3}\)

\(\Big \downarrow \) 26

\(\displaystyle -\frac {x^2}{b c (a+b \text {arcsinh}(c x))}+\frac {i \int \frac {\sin \left (\frac {2 i a}{b}-\frac {2 i (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b^2 c^3}\)

\(\Big \downarrow \) 3784

\(\displaystyle -\frac {x^2}{b c (a+b \text {arcsinh}(c x))}+\frac {i \left (i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\cosh \left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))+\cosh \left (\frac {2 a}{b}\right ) \int -\frac {i \sinh \left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))\right )}{b^2 c^3}\)

\(\Big \downarrow \) 26

\(\displaystyle -\frac {x^2}{b c (a+b \text {arcsinh}(c x))}+\frac {i \left (i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\cosh \left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))-i \cosh \left (\frac {2 a}{b}\right ) \int \frac {\sinh \left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))\right )}{b^2 c^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {x^2}{b c (a+b \text {arcsinh}(c x))}+\frac {i \left (i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))-i \cosh \left (\frac {2 a}{b}\right ) \int -\frac {i \sin \left (\frac {2 i (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))\right )}{b^2 c^3}\)

\(\Big \downarrow \) 26

\(\displaystyle -\frac {x^2}{b c (a+b \text {arcsinh}(c x))}+\frac {i \left (i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))-\cosh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))\right )}{b^2 c^3}\)

\(\Big \downarrow \) 3779

\(\displaystyle -\frac {x^2}{b c (a+b \text {arcsinh}(c x))}+\frac {i \left (i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))-i \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )\right )}{b^2 c^3}\)

\(\Big \downarrow \) 3782

\(\displaystyle -\frac {x^2}{b c (a+b \text {arcsinh}(c x))}+\frac {i \left (i \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )-i \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )\right )}{b^2 c^3}\)

input
Int[x^2/(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^2),x]
 
output
-(x^2/(b*c*(a + b*ArcSinh[c*x]))) + (I*(I*CoshIntegral[(2*(a + b*ArcSinh[c 
*x]))/b]*Sinh[(2*a)/b] - I*Cosh[(2*a)/b]*SinhIntegral[(2*(a + b*ArcSinh[c* 
x]))/b]))/(b^2*c^3)
 

3.5.38.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3779
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[I*(SinhIntegral[c*f*(fz/d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f 
, fz}, x] && EqQ[d*e - c*f*fz*I, 0]
 

rule 3782
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[CoshIntegral[c*f*(fz/d) + f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz 
}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]
 

rule 3784
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d* 
e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/(c + d*x), x], x] + Simp[Sin[(d*e - c* 
f)/d]   Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}, x] 
&& NeQ[d*e - c*f, 0]
 

rule 5971
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + 
(b_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + 
b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& IGtQ[p, 0]
 

rule 6195
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
1/(b*c^(m + 1))   Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b], x], x, 
 a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 

rule 6233
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) 
 + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 + c 
^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] - Simp[f*(m/(b*c* 
(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]   Int[(f*x)^(m - 1)*(a + 
b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e 
, c^2*d] && LtQ[n, -1]
 
3.5.38.4 Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.71

method result size
default \(-\frac {2 b \,c^{2} x^{2}+{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (c x \right )-\frac {2 a}{b}\right ) b \,\operatorname {arcsinh}\left (c x \right )-{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (c x \right )+\frac {2 a}{b}\right ) b \,\operatorname {arcsinh}\left (c x \right )+{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (c x \right )-\frac {2 a}{b}\right ) a -{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (c x \right )+\frac {2 a}{b}\right ) a}{2 c^{3} b^{2} \left (a +b \,\operatorname {arcsinh}\left (c x \right )\right )}\) \(135\)

input
int(x^2/(a+b*arcsinh(c*x))^2/(c^2*x^2+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/2*(2*b*c^2*x^2+exp(-2*a/b)*Ei(1,-2*arcsinh(c*x)-2*a/b)*b*arcsinh(c*x)-e 
xp(2*a/b)*Ei(1,2*arcsinh(c*x)+2*a/b)*b*arcsinh(c*x)+exp(-2*a/b)*Ei(1,-2*ar 
csinh(c*x)-2*a/b)*a-exp(2*a/b)*Ei(1,2*arcsinh(c*x)+2*a/b)*a)/c^3/b^2/(a+b* 
arcsinh(c*x))
 
3.5.38.5 Fricas [F]

\[ \int \frac {x^2}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^2} \, dx=\int { \frac {x^{2}}{\sqrt {c^{2} x^{2} + 1} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

input
integrate(x^2/(a+b*arcsinh(c*x))^2/(c^2*x^2+1)^(1/2),x, algorithm="fricas" 
)
 
output
integral(sqrt(c^2*x^2 + 1)*x^2/(a^2*c^2*x^2 + (b^2*c^2*x^2 + b^2)*arcsinh( 
c*x)^2 + a^2 + 2*(a*b*c^2*x^2 + a*b)*arcsinh(c*x)), x)
 
3.5.38.6 Sympy [F]

\[ \int \frac {x^2}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^2} \, dx=\int \frac {x^{2}}{\left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{2} \sqrt {c^{2} x^{2} + 1}}\, dx \]

input
integrate(x**2/(a+b*asinh(c*x))**2/(c**2*x**2+1)**(1/2),x)
 
output
Integral(x**2/((a + b*asinh(c*x))**2*sqrt(c**2*x**2 + 1)), x)
 
3.5.38.7 Maxima [F]

\[ \int \frac {x^2}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^2} \, dx=\int { \frac {x^{2}}{\sqrt {c^{2} x^{2} + 1} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

input
integrate(x^2/(a+b*arcsinh(c*x))^2/(c^2*x^2+1)^(1/2),x, algorithm="maxima" 
)
 
output
-(c^3*x^5 + c*x^3 + (c^2*x^4 + x^2)*sqrt(c^2*x^2 + 1))/((c^2*x^2 + 1)*a*b* 
c^2*x + ((c^2*x^2 + 1)*b^2*c^2*x + (b^2*c^3*x^2 + b^2*c)*sqrt(c^2*x^2 + 1) 
)*log(c*x + sqrt(c^2*x^2 + 1)) + (a*b*c^3*x^2 + a*b*c)*sqrt(c^2*x^2 + 1)) 
+ integrate((2*c^5*x^6 + 5*c^3*x^4 + 3*c*x^2 + (2*c^3*x^4 + c*x^2)*(c^2*x^ 
2 + 1) + 2*(2*c^4*x^5 + 3*c^2*x^3 + x)*sqrt(c^2*x^2 + 1))/((c^2*x^2 + 1)^( 
3/2)*a*b*c^3*x^2 + 2*(a*b*c^4*x^3 + a*b*c^2*x)*(c^2*x^2 + 1) + ((c^2*x^2 + 
 1)^(3/2)*b^2*c^3*x^2 + 2*(b^2*c^4*x^3 + b^2*c^2*x)*(c^2*x^2 + 1) + (b^2*c 
^5*x^4 + 2*b^2*c^3*x^2 + b^2*c)*sqrt(c^2*x^2 + 1))*log(c*x + sqrt(c^2*x^2 
+ 1)) + (a*b*c^5*x^4 + 2*a*b*c^3*x^2 + a*b*c)*sqrt(c^2*x^2 + 1)), x)
 
3.5.38.8 Giac [F]

\[ \int \frac {x^2}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^2} \, dx=\int { \frac {x^{2}}{\sqrt {c^{2} x^{2} + 1} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

input
integrate(x^2/(a+b*arcsinh(c*x))^2/(c^2*x^2+1)^(1/2),x, algorithm="giac")
 
output
integrate(x^2/(sqrt(c^2*x^2 + 1)*(b*arcsinh(c*x) + a)^2), x)
 
3.5.38.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^2} \, dx=\int \frac {x^2}{{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2\,\sqrt {c^2\,x^2+1}} \,d x \]

input
int(x^2/((a + b*asinh(c*x))^2*(c^2*x^2 + 1)^(1/2)),x)
 
output
int(x^2/((a + b*asinh(c*x))^2*(c^2*x^2 + 1)^(1/2)), x)